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ABSTRACT 

For measurement and verification (M&V) of energy savings in buildings, we propose an approach based on Gaussian Process (GP) 
modeling that can represent nonlinear energy behavior, multivariable interactions, and time correlations while quantifying uncertainty 
associated with predictions. We applied GP modeling to determine energy savings from BuildingIQ’s energy management system 
deployed at the Advanced Photon Source Office building at Argonne. The case study demonstrates the potential strengths of GP models 
for M&V and explores the importance of dataset characteristics and explanatory variables for the reliability of analysis results. The 
case study illustrates the capability of GP modeling to predict hourly dynamic behavior, exploiting the possibility to reduce uncertainty in 
energy-use predictions using measured data with finer time resolutions.  The proposed M&V approach is amendable to automation in 
energy management systems and continuous monitoring of energy performance.  

INTRODUCTION 

Enhancing the energy efficiency of existing buildings has been one of the major requirements for meeting 
America’s national-level energy reduction targets. The American Recovery and Reinvestment Act (ARRA) funded 
about $16 billion for state and local government energy efficiency programs over 3-4 years (Schiller et al., 2011). 
Also, about 35 states implemented ratepayer-funded energy efficiency programs with a total budget of $3.1 billion 
in 2008 (Barbose et al., 2009). These energy efficiency programs have adopted the Energy Efficiency Resource 
Standard, which requires utilities to achieve a certain energy-savings target by improving energy efficiency of 
buildings, distribution systems, and power generation systems. In most states, utilities often spend a large portion 
of their program costs for enhancing the energy efficiency of buildings; indeed, 50% of the ARRA State Energy 
Program fund was allocated for building retrofits in 2009 (Goldman et al., 2011). The Federal Energy Management 
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Program (FEMP) in the Department of Energy also allocated $2 billion in energy-savings performance contracts 
(ESPCs) and utility energy-savings contracts to help federal agencies accomplish energy savings in their facility 
operation (ESPC, 2012). These contracts are enacted with energy service companies (ESCOs), which are expected 
to have annual revenues of $7.1−7.3 billion in 2011 (Satchwell et al., 2010). Beyond the retrofit efforts at the 
government level, private building owners invest in energy retrofits to reduce utility bills and increase long-term 
real estatie value.  

For regulated energy efficiency programs and ESCOs, measurement and verification (M&V) of energy 
savings is a crucial business requirement. As part of performance-based contracts, ESCOs perform the M&V 
process of estimating energy savings achieved during the contract period, typically following the International 
Performance Measurement and Verification Protocol (IPMVP, 2010). Under the IPMVP approach, ASHRAE 
Guideline 14 provides technical details of modeling energy use, handling uncertainty in analysis, and validating 
analysis results, specifically for ESCO performance-based contracts (ASHRAE, 2002). In alignment with IPMVP 
and ASHRAE Guideline 14, FEMP also developed M&V guidelines that ESCOs should comply with in federal 
energy-savings performance contracts (FEMP, 2008). Furthermore, ARRA provides monitoring and reporting 
requirements to assist in evaluating the energy savings achieved from implemented actions (Recovery Act, 2012). 
The technical guidance in the requirements is consistent with the M&V options specified in the IPMVP.   

For determining energy savings from energy efficiency measures (EEMs), IPMVP and ASHRAE Guideline 
14 provide multiple calculation methods that estimate energy savings by using either building simulation models or 
measurement data (IPMVP, 2010; ASHRAE, 2002). For the method based on measurement data, one develops 
change-point linear regression models to capture nonlinear energy behavior for different regimes (e.g., 
heating/cooling, weekday/weekend) during the pre-retrofit period, typically as a function of outdoor air 
temperature. With the pre-retrofit models developed, one predicts baseline energy use corresponding to the post-
retrofit-period conditions. This step is required to calculate energy savings solely due to EEMs and excluding the 
effects of other factors such as weather conditions and changes in building usage patterns. Last, one obtains 
energy-savings estimates by subtracting measured energy use during the post-retrofit period from that predicted by 
the pre-retrofit regression models.  

For compliance, a maximum allowable uncertainty (X% uncertainty at Y% level of confidence) in the 
calculated energy savings must be specified for the selected M&V performance path. The guideline further 
stipulates that the maximum allowable uncertainty be set at a minimum of 50% of the calculated energy-saving 
estimate at 68% confidence. The guideline allows for any applicable uncertainty analysis method published in 
statistical textbooks to be used. It also provides a few simplified methods for the uncertainty quantification.  
Equation 1 is one example, derived from linear regression models with additive errors constant over the whole 
regime (Reddy and Claridge, 2000). In the equation,  refers to the energy-savings estimate aggregated over m 
observations during the post-retrofit periods,    is the prediction uncertainty in estimated annual savings, 
and n is the number of observations during the pre-retrofit period.  is the coefficient of variation of the 
root mean square error between predicted and measured baseline energy use over n observations; t is a t-statistic 
for the expected confidence level, and F refers to the ratio of the energy-savings estimate to the pre-retrofit energy 
use.   

                                                                                            (1) 

 
Equation 1 and statistical modeling techniques commonly used for M&V have two limitations. First, they do 

not capture the multivariate interactions of explanatory variables on energy use. Consequently, complex energy 
behaviors may not be adequately predicted by the models used for M&V. Second, simplified uncertainty estimation 
techniques do not provide information on the effect of data availability on prediction uncertainty. The capability to 
determine point-by-point uncertainties holds promise to reduce the amount and cost of data collected. 

Researchers have developed new inverse models for modeling baseline energy use on the basis of 
measurement data. ASHRAE held the “Greate Energy Predictor Shootout” in which contestants applied their 
inverse modeling algorithms to train hourly energy models (Kreider and Haberl, 1994). Most of the highly ranked 
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algorithms are based on neural network models, and the winner’s algorithm is based on Bayesian modeling using 
neural networks. In this paper, we propose a new standards-compliant approach based on Gaussian Process (GP) 
modeling that can represent nonlinear energy behavior, multivariable interactions, and time correlations while 
quantifying uncertainty associated with predictions. The proposed M&V approach uses measured data and is 
amenable to automation in energy management systems (EMSs) and for continuous monitoring of energy 
performance. A case study demonstrates the application and strengths of GP models for M&V.  

GAUSSIAN PROCESS MODELING 

For developing statistical models, we propose GP modeling as a new method that can reliably predict energy 
savings while quantifying uncertainty associated with predictions. The technique is data-based, follows a Bayesian 
setting, and is a generalization of nonlinear multivariable regression. Unlike standard regression models that pre-
determine relationships between explanatory and dependent variables, GP models specify the structure of the 
covariance matrix of explanatory variables.  This feature enables GP models to capture complex, nonlinear trends 
that result from multivariable interactions. Furthermore, since GP models are formulated as probabilistic models 
under a Bayesian setting, they can naturally quantify uncertainty in their predictions. The capability to quantify 
confidence levels associated with different energy use regimes will be especially useful in the many M&V cases in 
which only limited, sparse data are available.  For a detailed description of the GP modeling method, mathematical 
formulations, strengths, and limitations, the reader is referred to Heo and Zavala (2012). 

A GP model regresses a set of explanatory variables x to an output variable y as specified by a mean function 
and a covariance function. A mean function is a matrix of mean output values for the given set of input values, and 
is typically assumed to be zero. A covariance function is a matrix, each element of which indicates proximity 
between two input vectors with respect to their outputs. For two input vectors , the covariance matrix 

 is defined by Equation 2, in which  and  is the Euclidean norm.  are 
covariance function hyperparameters that control the model’s predictive power.  accounts for measurement 
errors in the output,  controls the precision of the GP model, and  controls correlation strength in each input 
parameter. The formulation of the covariance function accounts for modeling uncertainty and uncertainty in 
measured energy use while assuming that explanatory variable values are deterministic. The GP model is trained 
through the log likelihood function that updates the hyperparameter values that maximize the data likelihood. 
Equation 3 defines the log likelihood function:  is the mean function for input vector set  in the training 
dataset, and  refers to the determinant of the covariance matrix.  

                                                                   (2) 

    (3) 

After training the model, we obtain the optimal hyperparameter values  that determine mean function 
values  and covariance matrix  for new test input matrix . The mean and covariance matrixes of the 
model predictions are defined in Equations 4 and 5, respectively.   

                                                                                        (4) 
                                (5) 

CASE STUDY 

This section demonstrates the strengths of GP modeling for M&V applications through a case study. We 
implemented an EMS in the Advanced Photon Source (APS) office building at Argonne National Laboratory. The 
building is a five-story, 190,000 square foot building that consists of cellular offices, seminar rooms, and 
laboratories. The building has two air-handling units (AHUs) that provide fresh air and supply air cooled by district 
chillers serving the entire APS site. The building has reheat coils in terminal units that reheat cooled supply air to 
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meet heating demands in individual spaces. The EMS implemented in the building is the BuildingIQ system, which 
optimizes supply-air temperature and static pressure setpoints to reduce energy use while maintaining occupants’ 
thermal comfort (Zavala et al., 2011). The system includes a black-box model that captures the effects of weather 
conditions, control variables of interest, and AHU energy use (chilled-water energy use, in this case) on aggregate-
level zone temperature. Table 1 summarizes the numbers of hourly data points collected during the pre-retrofit 
period (without the EMS operating) and during the post-retrofit period (with the EMS operating). The data set 
contains a larger number of post-retrofit data points covering a wider span of weather variations, including 
extremely cold weather conditions, compared to a smaller number of pre-retrofit data points. This situation is 
common in retrofit projects, in which the collected data are often sparse and limited. Given the limited dataset, 
quantifying uncertainty associated with predictions is crucial to reliably determining energy savings.  

 
Table 1.  Summary of Collected Data  

 Number of Hourly Datasets   Ambient Temperature Range Data Collection Period* 
Pre-retrofit 

Period 
536    9.0 degC – 37.5 degC May-August 2012 

Post-retrofit 
Period 

3136 -22.8 degC – 35.0 degC February-October 2012 

*The BuildingIQ system was operated on intermittent days in May-August to collect pre-retrofit data. 

Developing GP Models for Predicting Hourly Energy Use 

Heo and Zavala (2012) showed that GP models can be used to predict hourly energy use in buildings and 
that finer-resolution data could help reduce uncertainties in the analysis. With this approach, we are able to fully 
exploit diurnal variations in weather and building conditions, increasing the available measured data by more than 
an order of magnitude during a set sampling period.  Developing GP models for finer-resolution data requires 
special attention to designing a set of explanatory variables that enable the GP model to capture complex energy 
trends.   

For predicting hourly chilled-water energy use, we used three-step measured values (at times t, t -1, and t -2) 
for each explanatory variable to capture delay in the effect of the explanatory variables on energy use at time t due 
to thermal lag. Table 2 summarizes the reliability of test predictions with different sets of explanatory variables. 
The predictive power of the GP model is evaluated by two statistical metrics: (1) SSE, i.e., the total sum-of-squares 
error in the expected energy use prediction compared to measured energy, and (2) C.I., i.e., 95% confidence 
intervals of model predictions. Case 1 represents typical M&V practices that use ambient temperature (Tamb) as the 
only explanatory variable. By adding ambient relative humidity (RHamb), Case 2 significantly reduced SSE and C.I., 
whereas incorporating solar radiation (SR) in Case 3 did not enhance the model’s predictive power much. Case 4 
introduces the CO2 concentration of return air (CO2return) as a surrogate parameter to capture occupancy variations. 
Including this variable in the model derivation noticeably reduced SSE. As seen in Cases 4 and 7, adding outdoor 
air flow (Foutdoor) or the economizer position (Seconomizer) had a small overall effect on the model’s predictive power. 
Case 9, which uses the three variables Tamb, RHamb, and CO2return, yields the model with the lowest SSE and C.I. 
When additional variables beyond those three were incorporated (Cases 10 and 11), SSE and C.I. increased 
because the dataset may not fully explain interactions between the explanatory variables. Hence, for this evaluation, 
we used ambient temperature, ambient relative humidity, and CO2 concentration of return air as explanatory 
variables for developing pre-retrofit and post-retrofit models. These analysis results suggest that M&V does not 
necessarily require deep monitoring of building operation but needs only metered energy-use data and a realistic 
estimate of occupancy patterns.   
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Table 2.  Effect of Different Sets of Measured Explanatory Variables on Model Predictions 

Explanatory Variable 
(at times t, t-1, and t-2) 

Pre-retrofit Model Post-retrofit Model 
SSE C.I. SSE C.I. 

1 Tamb 3.71×106 3.85×103 4.79×107 1.39×104 
2 Tamb  + RHamb 9.55×105 2.08×103 3.29×107 1.16×104 
3 Tamb  + SR  3.64×106 3.84×103 4.61×107 1.36×104 
4 Tamb  + CO2return 3.32×106 3.70×103 4.21×107 1.30×104 
5 Tamb  + Foutdoor 2.34×106 3.15×103 4.69×107 1.38×104 
6 Tamb  + RHamb  + SR 1.79×106 2.80×103 3.30×107 1.16×104 
7 Tamb  + CO2return  + Foutdoor 2.16×106 3.06×103 4.30×107 1.32×104 
8 Tamb  + Foutdoor  + Seconomizer 2.34×106 3.15×103 4.68×107 1.37×104 
9 Tamb  + RHamb  + CO2return 7.84×105 1.94×103 2.69×107 1.06×104 
10 Tamb  + RHamb  + CO2return  + Foutdoor 1.15×106 2.25×103 3.66×107 1.22×104 
11 Tamb  + RHamb  + SR  + CO2return 1.78×106 2.79×103 2.85×107 1.09×104 

 
Figure 1 compares measured energy use with hourly predictions of the pre-retrofit and the post-retrofit models 
using the Case 9 explanatory-variable set. These results indicate that the GP models with the three Case-9 variables 
capture hourly dynamic energy trends. Although discrepancies between predicted means and measurements are 
observed, most of the measured data lie within the C.I. We note that discrepancies for the post-retrofit predictions 
are noticeably larger than those for the pre-retrofit predictions: this trend could be attributed to the dynamic, 
predictive HVAC control of the EMS that may not be fully explained by the selected variables.  
 

  
(a)                                                                                       (b)                                                       

Figure 1 (a) Hourly pre-retrofit chilled-water energy use predictions (black line) compared with pre-retrofit 
measured energy use (blue dots) and (b) hourly post-retrofit chilled-water energy use predictions (black line) 
compared with post-retrofit measured energy use (red dots) 

Estimating Energy Savings 

In practice, M&V projects calculate energy savings by developing pre-retrofit energy models and subtracting 
measured post-retrofit energy-use values from those predicted using the pre-retrofit energy model. In our case 
study, we modeled both hourly pre-retrofit and post-retrofit energy using measured data for standard yearly 
weather and occupancy conditions.  We used Typical Meteorological Year (TMY) weather data and generated 
stochastic CO2 profiles by randomly selecting an hourly CO2 concentration from the probabilistic distributions 
derived on the basis of collected CO2 concentration per time of day for weekdays and weekends. By aggregating 
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probabilistic hourly predictions, we obtain monthly pre-retrofit and post-retrofit energy use. The mean of the 
monthly energy use is the summation of all hourly energy use predictions corresponding to each month, and the 
variance is the summation of the covariance matrix corresponding to each month. Figure 2 shows monthly pre-
retrofit and post-retrofit chilled-water energy use (left side) and energy-savings predictions (right side). Solid points 
refer to mean values, and whiskers refer to associated 95% C.I. The hourly GP model was able to predict pre-
retrofit energy use during the winter season by fully exploiting hourly data. However, owing to the lack of data, the 
pre-retrofit predictions corresponding to this period have much wider C.I. compared to the rest of the year. 
Annual energy-savings estimates are derived following the same time-aggregation approach; the mean annual 
energy-savings estimate is 1.32×106 kWh (30% energy savings compared to the pre-retrofit chilled-water energy 
use), with C.I. ranging between 3.33×105 and 2.31×106 kWh.  

  
(a)                                                                                       (b)                                                       

Figure 2 (a) Aggregated monthly energy use predictions, pre-retrofit (blue circles) and post-retrofit (red squares), 
and (b) monthly energy savings  

 
The GP regression method directly computes the energy-savings uncertainty at different levels of confidence. 

Table 3 provides prediction uncertainties from our case study for comparison to the ASHRAE minimum 
compliance criteria of 50% uncertainty at 68% confidence. Overall, for monthly energy-savings estimates, 
prediction uncertainty at 68% confidence is less than 50% of corresponding monthly energy-savings estimates 
except for December. For the annual energy-savings estimate, prediction uncertainty at 68% confidence is also less 
than 50% of the annual savings estimate. As seen from these results, the GP regression method can be used to 
determine compliance with uncertainty requirements.  Other benefits of the method are also illustrated.  
Significantly, the GP method quantifies uncertainty in the estimated energy savings directly from the regression 
results without applying simplified statistical derivations. The method also quantifies and considers the uncertainty 
associated with both the pre-retrofit and the post-retrofit energy use data and model predictions, generating more 
comprehensive uncertainty estimates.  In addition, GP regression provides “point-by-point” uncertainties for more 
detailed analysis of sparse data sets to attain balance between the confidence in results and the costs of collecting 
data. 

Table 3.  Monthly and Annual Energy Savings Prediction Uncertainty  
(% of Energy Savings at 68% Confidence) 

1 2 3 4 5 6 7 8 9 10 11 12 Annual 
49.2 43.8 43.4 36.7 34.8 36.5 47.1 46.5 32.3 34.8 41.8 51.5 37.4 
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Evaluating the Lengh of Data Collection  

This section investigates whether GP modeling requires the data sets that cover the full seasonal variation in 
order to reliably predict annual energy use. In practice, M&V projects often confront limited, sparse datasets for 
analysis, and our case study also has limited data collected for the pre-retrofit period that does not cover the winter 
season. For validating GP models based on limited datasets, we compared two cases: (1) Case 1: developing a post-
retrofit model using the dataset from May to August (the period used for developing the pre-retrofit model) and 
(2) Case 2: developing a post-retrofit model using the dataset obtained from February to October. Figure 3 displays 
the expected post-retrofit energy uses and associated 95% confidence intervals for Cases 1 and 2. For the summer 
and intermittent seasons, the two cases result in quite similar expected values with narrow confidence intervals. 
However, for the winter season, discrepancies between the two cases are observed in expected values, and Case 1 
results have noticeably larger confidence intervals than Case 2. Indeed, Case 2 reduced the magnitude of 
uncertainty in annual energy-use predictions by 34%. This comparison suggests that collecting data points across 
all weather coditions is helpful to both improving the fit and reducing prediction uncertainty.  

 
Figure 3 Monthly energy use predictions for case 1 (post-retrofit model with data from May to August) and case 2 
(post-retrofit model with data from Feb to October)  

CONCLUSION 

 M&V of energy savings are crucial to verifying whether energy-savings targets are met through 
implementation of EEMs. Conventional methods are limited in their capacity to consider multivariate interactions 
and to quantify uncertainty in predictions associated with data availability. In order to enhance the current practice, 
we have demonstrated a new M&V method based on GP modeling that is capable of capturing nonlinear trends, 
including hourly energy use behaviors, and accounting for multivariable interdependencies.   In addition, since the 
GP model is formulated under a Bayesian setting, it can naturally quantify uncertainty in energy-savings 
predictions.  

In order to enhance the applicability of GP modeling for M&V practices, we are developing:  (1) GP 
regression software to calculate annual energy-savings estimates from different time-resolution data (i.e., hourly, 
daily, monthly); and (2) guidelines for handling different resolution data on the basis of broad case studies. Also, 
we need to directly compare the GP modeling method with conventional and new M&C statistical methods, using 
available datasets like those developed for the ASHRAE Predictor Shootout.  

Further, the proposed method can be integrated in EMS for on-line analysis of energy savings and 
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performance.  In this application, the full capabilities of the methodology can be exercised productively to generate 
actionable information from the interval data collected in the EMS, including energy-savings reports and feedback 
to supervisory controls.  For the special case of evaluating the energy savings from installing an EMS, the data 
collected by the system could be used to develop a post-retrofit model with uncertainty against which pre-retrofit 
energy use is statistically compared. In appropriate contexts, sampling strategies to collect pre-retrofit and post-
retrofit data points by intermittent operations can generate energy-savings estimates with minimal number of 
baseline datapoints. Heo and Zavala (2012) evaluated adaptive sampling strategies and the effect of baseline data 
points on the performance of the GP model through simulation settings.  
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